Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 342
Filtrar
1.
Nat Commun ; 15(1): 888, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38291025

RESUMEN

To date only a fraction of the genetic footprint of thyroid function has been clarified. We report a genome-wide association study meta-analysis of thyroid function in up to 271,040 individuals of European ancestry, including reference range thyrotropin (TSH), free thyroxine (FT4), free and total triiodothyronine (T3), proxies for metabolism (T3/FT4 ratio) as well as dichotomized high and low TSH levels. We revealed 259 independent significant associations for TSH (61% novel), 85 for FT4 (67% novel), and 62 novel signals for the T3 related traits. The loci explained 14.1%, 6.0%, 9.5% and 1.1% of the total variation in TSH, FT4, total T3 and free T3 concentrations, respectively. Genetic correlations indicate that TSH associated loci reflect the thyroid function determined by free T3, whereas the FT4 associations represent the thyroid hormone metabolism. Polygenic risk score and Mendelian randomization analyses showed the effects of genetically determined variation in thyroid function on various clinical outcomes, including cardiovascular risk factors and diseases, autoimmune diseases, and cancer. In conclusion, our results improve the understanding of thyroid hormone physiology and highlight the pleiotropic effects of thyroid function on various diseases.


Asunto(s)
Glándula Tiroides , Tiroxina , Humanos , Glándula Tiroides/metabolismo , Tiroxina/metabolismo , Estudio de Asociación del Genoma Completo , Triyodotironina/metabolismo , Tirotropina/metabolismo
2.
Nat Commun ; 15(1): 586, 2024 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-38233393

RESUMEN

X-chromosomal genetic variants are understudied but can yield valuable insights into sexually dimorphic human traits and diseases. We performed a sex-stratified cross-ancestry X-chromosome-wide association meta-analysis of seven kidney-related traits (n = 908,697), identifying 23 loci genome-wide significantly associated with two of the traits: 7 for uric acid and 16 for estimated glomerular filtration rate (eGFR), including four novel eGFR loci containing the functionally plausible prioritized genes ACSL4, CLDN2, TSPAN6 and the female-specific DRP2. Further, we identified five novel sex-interactions, comprising male-specific effects at FAM9B and AR/EDA2R, and three sex-differential findings with larger genetic effect sizes in males at DCAF12L1 and MST4 and larger effect sizes in females at HPRT1. All prioritized genes in loci showing significant sex-interactions were located next to androgen response elements (ARE). Five ARE genes showed sex-differential expressions. This study contributes new insights into sex-dimorphisms of kidney traits along with new prioritized gene targets for further molecular research.


Asunto(s)
Andrógenos , Estudio de Asociación del Genoma Completo , Humanos , Masculino , Femenino , Andrógenos/genética , Riñón , Cromosomas Humanos X/genética , Elementos de Respuesta , Polimorfismo de Nucleótido Simple , Predisposición Genética a la Enfermedad , Tetraspaninas/genética
3.
Clin Chem ; 70(2): 403-413, 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38069915

RESUMEN

BACKGROUND: Many studies have investigated whether single cardiac biomarkers improve cardiovascular risk prediction for primary prevention but whether a combined approach could further improve risk prediction is unclear. We aimed to test a sex-specific, combined cardiac biomarker approach for cardiovascular risk prediction. METHODS: In the Generation Scotland Scottish Family Health Study, N-terminal pro-B-type natriuretic peptide (NT-proBNP), growth differentiation factor-15 (GDF-15), cardiac troponin I (cTnI), cardiac troponin T (cTnT), and C-reactive protein (CRP) were measured in stored serum using automated immunoassays. Sex-specific Cox models that included SCORE2 risk factors evaluated addition of single and combined biomarkers for prediction of major adverse cardiovascular events (MACE). Combined biomarker models were compared to a baseline model that included SCORE2 risk factors. RESULTS: The study population comprised 18 383 individuals (58.9% women, median age of 48 years [25th-75th percentile, 35-58 years]). During the median follow up of 11.6 (25th-75th percentile, 10.8-13.0) years, MACE occurred in 942 (5.1%) individuals. The greatest increase in discrimination with addition of individual biomarkers to the base model was for women GDF-15 and for men NT-proBNP (change in c-index: + 0.010 for women and +0.005 for men). For women, combined biomarker models that included GDF-15 and NT-proBNP (+0.012) or GDF-15 and cTnI (+0.013), but not CRP or cTnT, further improved discrimination. For men, combined biomarker models that included NT-proBNP and GDF-15 (+0.007), NT-proBNP and cTnI (+0.006), or NT-proBNP and CRP (+0.008), but not cTnT, further improved discrimination. CONCLUSIONS: A combined biomarker approach, particularly the use of GDF-15, NT-proBNP and cTnI, further refined cardiovascular risk estimates.


Asunto(s)
Enfermedades Cardiovasculares , Factor 15 de Diferenciación de Crecimiento , Masculino , Humanos , Femenino , Persona de Mediana Edad , Salud de la Familia , Biomarcadores , Péptido Natriurético Encefálico , Proteína C-Reactiva/metabolismo , Fragmentos de Péptidos , Troponina T , Pronóstico
4.
medRxiv ; 2023 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-38076919

RESUMEN

Rare copy number variants (CNVs) and polygenic risk for intelligence (PRS-IQ) both confer risk for autism spectrum disorder (ASD) but have opposing effects on cognitive ability. The field has struggled to disentangle the effects of these two classes of genomic variants on cognitive ability from their effects on ASD risk, in part because previous studies did not include controls with cognitive measures. We aim to investigate the impact of these genomic variants on ASD risk while adjusting for their known effects on cognitive ability. In a cohort of 8,426 subjects with ASD and 169,804 controls with cognitive assessments, we found that rare coding CNVs and PRS-IQ increased ASD risk, even after adjusting for their effects on cognitive ability. Bottom decile PRS-IQ and CNVs both decreased cognitive ability but had opposing effects on ASD risk. Models combining both classes of variants showed that the effects of rare CNVs and PRS-IQ on ASD risk and cognitive ability were largely additive, further suggesting that risk for ASD is conferred independently from its effects on cognitive ability. Despite imparting mostly additive effects on ASD risk, rare CNVs and PRS-IQ showed opposing effects on core and associated features and developmental history among subjects with ASD. Our findings suggest that cognitive ability itself may not be the factor driving the underlying risk for ASD conferred by these two classes of genomic variants. In other words, ASD risk and cognitive ability may be two distinct manifestations of CNVs and PRS-IQ. This study also highlights the challenge of understanding how genetic risk for ASD maps onto its dimensional traits.

5.
Aging (Albany NY) ; 15(24): 14509-14552, 2023 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-38149987

RESUMEN

Glycans are an essential structural component of immunoglobulin G (IgG) that modulate its structure and function. However, regulatory mechanisms behind this complex posttranslational modification are not well known. Previous genome-wide association studies (GWAS) identified 29 genomic regions involved in regulation of IgG glycosylation, but only a few were functionally validated. One of the key functional features of IgG glycosylation is the addition of galactose (galactosylation), a trait which was shown to be associated with ageing. We performed GWAS of IgG galactosylation (N=13,705) and identified 16 significantly associated loci, indicating that IgG galactosylation is regulated by a complex network of genes that extends beyond the galactosyltransferase enzyme that adds galactose to IgG glycans. Gene prioritization identified 37 candidate genes. Using a recently developed CRISPR/dCas9 system we manipulated gene expression of candidate genes in the in vitro IgG expression system. Upregulation of three genes, EEF1A1, MANBA and TNFRSF13B, changed the IgG glycome composition, which confirmed that these three genes are involved in IgG galactosylation in this in vitro expression system.


Asunto(s)
Galactosa , Estudio de Asociación del Genoma Completo , Redes Reguladoras de Genes , Inmunoglobulina G/genética , Polisacáridos/metabolismo
8.
Nat Immunol ; 24(9): 1540-1551, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37563310

RESUMEN

Circulating proteins have important functions in inflammation and a broad range of diseases. To identify genetic influences on inflammation-related proteins, we conducted a genome-wide protein quantitative trait locus (pQTL) study of 91 plasma proteins measured using the Olink Target platform in 14,824 participants. We identified 180 pQTLs (59 cis, 121 trans). Integration of pQTL data with eQTL and disease genome-wide association studies provided insight into pathogenesis, implicating lymphotoxin-α in multiple sclerosis. Using Mendelian randomization (MR) to assess causality in disease etiology, we identified both shared and distinct effects of specific proteins across immune-mediated diseases, including directionally discordant effects of CD40 on risk of rheumatoid arthritis versus multiple sclerosis and inflammatory bowel disease. MR implicated CXCL5 in the etiology of ulcerative colitis (UC) and we show elevated gut CXCL5 transcript expression in patients with UC. These results identify targets of existing drugs and provide a powerful resource to facilitate future drug target prioritization.


Asunto(s)
Colitis Ulcerosa , Enfermedades Inflamatorias del Intestino , Esclerosis Múltiple , Humanos , Estudio de Asociación del Genoma Completo , Enfermedades Inflamatorias del Intestino/genética , Sitios de Carácter Cuantitativo , Colitis Ulcerosa/tratamiento farmacológico , Colitis Ulcerosa/genética , Inflamación/genética , Esclerosis Múltiple/genética , Polimorfismo de Nucleótido Simple
9.
PLoS Med ; 20(7): e1004247, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37410739

RESUMEN

BACKGROUND: DNA methylation is a dynamic epigenetic mechanism that occurs at cytosine-phosphate-guanine dinucleotide (CpG) sites. Epigenome-wide association studies (EWAS) investigate the strength of association between methylation at individual CpG sites and health outcomes. Although blood methylation may act as a peripheral marker of common disease states, previous EWAS have typically focused only on individual conditions and have had limited power to discover disease-associated loci. This study examined the association of blood DNA methylation with the prevalence of 14 disease states and the incidence of 19 disease states in a single population of over 18,000 Scottish individuals. METHODS AND FINDINGS: DNA methylation was assayed at 752,722 CpG sites in whole-blood samples from 18,413 volunteers in the family-structured, population-based cohort study Generation Scotland (age range 18 to 99 years). EWAS tested for cross-sectional associations between baseline CpG methylation and 14 prevalent disease states, and for longitudinal associations between baseline CpG methylation and 19 incident disease states. Prevalent cases were self-reported on health questionnaires at the baseline. Incident cases were identified using linkage to Scottish primary (Read 2) and secondary (ICD-10) care records, and the censoring date was set to October 2020. The mean time-to-diagnosis ranged from 5.0 years (for chronic pain) to 11.7 years (for Coronavirus Disease 2019 (COVID-19) hospitalisation). The 19 disease states considered in this study were selected if they were present on the World Health Organisation's 10 leading causes of death and disease burden or included in baseline self-report questionnaires. EWAS models were adjusted for age at methylation typing, sex, estimated white blood cell composition, population structure, and 5 common lifestyle risk factors. A structured literature review was also conducted to identify existing EWAS for all 19 disease states tested. The MEDLINE, Embase, Web of Science, and preprint servers were searched to retrieve relevant articles indexed as of March 27, 2023. Fifty-four of approximately 2,000 indexed articles met our inclusion criteria: assayed blood-based DNA methylation, had >20 individuals in each comparison group, and examined one of the 19 conditions considered. First, we assessed whether the associations identified in our study were reported in previous studies. We identified 69 associations between CpGs and the prevalence of 4 conditions, of which 58 were newly described. The conditions were breast cancer, chronic kidney disease, ischemic heart disease, and type 2 diabetes mellitus. We also uncovered 64 CpGs that associated with the incidence of 2 disease states (COPD and type 2 diabetes), of which 56 were not reported in the surveyed literature. Second, we assessed replication across existing studies, which was defined as the reporting of at least 1 common site in >2 studies that examined the same condition. Only 6/19 disease states had evidence of such replication. The limitations of this study include the nonconsideration of medication data and a potential lack of generalizability to individuals that are not of Scottish and European ancestry. CONCLUSIONS: We discovered over 100 associations between blood methylation sites and common disease states, independently of major confounding risk factors, and a need for greater standardisation among EWAS on human disease.


Asunto(s)
COVID-19 , Diabetes Mellitus Tipo 2 , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Humanos , Persona de Mediana Edad , Adulto Joven , Estudios de Cohortes , Islas de CpG/genética , Estudios Transversales , Diabetes Mellitus Tipo 2/genética , Metilación de ADN , Epigénesis Genética , Epigenoma , Estudio de Asociación del Genoma Completo/métodos , Masculino , Femenino
10.
Int J Epidemiol ; 52(5): 1579-1591, 2023 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-37295953

RESUMEN

BACKGROUND: Previous Mendelian randomization (MR) studies using population samples (population MR) have provided evidence for beneficial effects of educational attainment on health outcomes in adulthood. However, estimates from these studies may have been susceptible to bias from population stratification, assortative mating and indirect genetic effects due to unadjusted parental genotypes. MR using genetic association estimates derived from within-sibship models (within-sibship MR) can avoid these potential biases because genetic differences between siblings are due to random segregation at meiosis. METHODS: Applying both population and within-sibship MR, we estimated the effects of genetic liability to educational attainment on body mass index (BMI), cigarette smoking, systolic blood pressure (SBP) and all-cause mortality. MR analyses used individual-level data on 72 932 siblings from UK Biobank and the Norwegian HUNT study, and summary-level data from a within-sibship Genome-wide Association Study including >140 000 individuals. RESULTS: Both population and within-sibship MR estimates provided evidence that educational attainment decreased BMI, cigarette smoking and SBP. Genetic variant-outcome associations attenuated in the within-sibship model, but genetic variant-educational attainment associations also attenuated to a similar extent. Thus, within-sibship and population MR estimates were largely consistent. The within-sibship MR estimate of education on mortality was imprecise but consistent with a putative effect. CONCLUSIONS: These results provide evidence of beneficial individual-level effects of education (or liability to education) on adulthood health, independently of potential demographic and family-level confounders.


Asunto(s)
Éxito Académico , Análisis de la Aleatorización Mendeliana , Humanos , Análisis de la Aleatorización Mendeliana/métodos , Estudio de Asociación del Genoma Completo , Escolaridad , Polimorfismo de Nucleótido Simple , Evaluación de Resultado en la Atención de Salud
11.
Eur Respir J ; 61(6)2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37263751

RESUMEN

BACKGROUND: Chronic sputum production impacts on quality of life and is a feature of many respiratory diseases. Identification of the genetic variants associated with chronic sputum production in a disease agnostic sample could improve understanding of its causes and identify new molecular targets for treatment. METHODS: We conducted a genome-wide association study (GWAS) of chronic sputum production in UK Biobank. Signals meeting genome-wide significance (p<5×10-8) were investigated in additional independent studies, were fine-mapped and putative causal genes identified by gene expression analysis. GWASs of respiratory traits were interrogated to identify whether the signals were driven by existing respiratory disease among the cases and variants were further investigated for wider pleiotropic effects using phenome-wide association studies (PheWASs). RESULTS: From a GWAS of 9714 cases and 48 471 controls, we identified six novel genome-wide significant signals for chronic sputum production including signals in the human leukocyte antigen (HLA) locus, chromosome 11 mucin locus (containing MUC2, MUC5AC and MUC5B) and FUT2 locus. The four common variant associations were supported by independent studies with a combined sample size of up to 2203 cases and 17 627 controls. The mucin locus signal had previously been reported for association with moderate-to-severe asthma. The HLA signal was fine-mapped to an amino acid change of threonine to arginine (frequency 36.8%) in HLA-DRB1 (HLA-DRB1*03:147). The signal near FUT2 was associated with expression of several genes including FUT2, for which the direction of effect was tissue dependent. Our PheWAS identified a wide range of associations including blood cell traits, liver biomarkers, infections, gastrointestinal and thyroid-associated diseases, and respiratory disease. CONCLUSIONS: Novel signals at the FUT2 and mucin loci suggest that mucin fucosylation may be a driver of chronic sputum production even in the absence of diagnosed respiratory disease and provide genetic support for this pathway as a target for therapeutic intervention.


Asunto(s)
Estudio de Asociación del Genoma Completo , Esputo , Humanos , Esputo/metabolismo , Cadenas HLA-DRB1 , Calidad de Vida , Proteínas , Mucinas , Moco/metabolismo , Predisposición Genética a la Enfermedad , Polimorfismo de Nucleótido Simple
12.
Am J Hum Genet ; 110(6): 913-926, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37164005

RESUMEN

The "omnigenic" hypothesis postulates that the polygenic effects of common SNPs on a typical complex trait are mediated through trans-effects on expression of a relatively sparse set of effector ("core") genes. We tested this hypothesis in a study of 4,964 cases of type 1 diabetes (T1D) and 7,497 controls by using summary statistics to calculate aggregated (excluding the HLA region) trans-scores for gene expression in blood. From associations of T1D with aggregated trans-scores, nine putative core genes were identified, of which three-STAT1, CTLA4 and FOXP3-are genes in which variants cause monogenic forms of autoimmune diabetes. Seven of these genes affect the activity of regulatory T cells, and two are involved in immune responses to microbial lipids. Four T1D-associated genomic regions could be identified as master regulators via trans-effects on gene expression. These results support the sparse effector hypothesis and reshape our understanding of the genetic architecture of T1D.


Asunto(s)
Diabetes Mellitus Tipo 1 , Humanos , Diabetes Mellitus Tipo 1/genética , Herencia Multifactorial , Predisposición Genética a la Enfermedad , Sitios de Carácter Cuantitativo/genética , Polimorfismo de Nucleótido Simple/genética
13.
Genome Biol ; 24(1): 117, 2023 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-37189164

RESUMEN

BACKGROUND: The variation in the rate at which humans age may be rooted in early events acting through the genomic regions that are influenced by such events and subsequently are related to health phenotypes in later life. The parent-of-origin-effect (POE)-regulated methylome includes regions enriched for genetically controlled imprinting effects (the typical type of POE) and regions influenced by environmental effects associated with parents (the atypical POE). This part of the methylome is heavily influenced by early events, making it a potential route connecting early exposures, the epigenome, and aging. We aim to test the association of POE-CpGs with early and later exposures and subsequently with health-related phenotypes and adult aging. RESULTS: We perform a phenome-wide association analysis for the POE-influenced methylome using GS:SFHS (Ndiscovery = 5087, Nreplication = 4450). We identify and replicate 92 POE-CpG-phenotype associations. Most of the associations are contributed by the POE-CpGs belonging to the atypical class where the most strongly enriched associations are with aging (DNAmTL acceleration), intelligence, and parental (maternal) smoking exposure phenotypes. A proportion of the atypical POE-CpGs form co-methylation networks (modules) which are associated with these phenotypes, with one of the aging-associated modules displaying increased within-module methylation connectivity with age. The atypical POE-CpGs also display high levels of methylation heterogeneity, fast information loss with age, and a strong correlation with CpGs contained within epigenetic clocks. CONCLUSIONS: These results identify the association between the atypical POE-influenced methylome and aging and provide new evidence for the "early development of origin" hypothesis for aging in humans.


Asunto(s)
Envejecimiento , Epigenoma , Adulto , Humanos , Envejecimiento/genética , Fenotipo , Genómica , Epigenómica , Metilación de ADN , Islas de CpG , Epigénesis Genética
14.
Int J Mol Sci ; 24(8)2023 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-37108169

RESUMEN

Infectious diseases still threaten global human health, and host genetic factors have been indicated as determining risk factors for observed variations in disease susceptibility, severity, and outcome. We performed a genome-wide meta-analysis on 4624 subjects from the 10,001 Dalmatians cohort, with 14 infection-related traits. Despite a rather small number of cases in some instances, we detected 29 infection-related genetic associations, mostly belonging to rare variants. Notably, the list included the genes CD28, INPP5D, ITPKB, MACROD2, and RSF1, all of which have known roles in the immune response. Expanding our knowledge on rare variants could contribute to the development of genetic panels that could assist in predicting an individual's life-long susceptibility to major infectious diseases. In addition, longitudinal biobanks are an interesting source of information for identifying the host genetic variants involved in infectious disease susceptibility and severity. Since infectious diseases continue to act as a selective pressure on our genomes, there is a constant need for a large consortium of biobanks with access to genetic and environmental data to further elucidate the complex mechanisms behind host-pathogen interactions and infectious disease susceptibility.


Asunto(s)
Enfermedades Transmisibles , Predisposición Genética a la Enfermedad , Humanos , Fenotipo , Factores de Riesgo , Estudio de Asociación del Genoma Completo , Enfermedades Transmisibles/genética , Proteínas Nucleares/genética , Transactivadores/genética
15.
Nat Hum Behav ; 7(5): 790-801, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36864135

RESUMEN

Identifying genetic determinants of reproductive success may highlight mechanisms underlying fertility and identify alleles under present-day selection. Using data in 785,604 individuals of European ancestry, we identified 43 genomic loci associated with either number of children ever born (NEB) or childlessness. These loci span diverse aspects of reproductive biology, including puberty timing, age at first birth, sex hormone regulation, endometriosis and age at menopause. Missense variants in ARHGAP27 were associated with higher NEB but shorter reproductive lifespan, suggesting a trade-off at this locus between reproductive ageing and intensity. Other genes implicated by coding variants include PIK3IP1, ZFP82 and LRP4, and our results suggest a new role for the melanocortin 1 receptor (MC1R) in reproductive biology. As NEB is one component of evolutionary fitness, our identified associations indicate loci under present-day natural selection. Integration with data from historical selection scans highlighted an allele in the FADS1/2 gene locus that has been under selection for thousands of years and remains so today. Collectively, our findings demonstrate that a broad range of biological mechanisms contribute to reproductive success.


Asunto(s)
Fertilidad , Reproducción , Niño , Femenino , Humanos , Envejecimiento/fisiología , Fertilidad/genética , Menopausia/genética , Reproducción/genética , Selección Genética
16.
Genome Med ; 15(1): 12, 2023 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-36855161

RESUMEN

BACKGROUND: Epigenetic clocks can track both chronological age (cAge) and biological age (bAge). The latter is typically defined by physiological biomarkers and risk of adverse health outcomes, including all-cause mortality. As cohort sample sizes increase, estimates of cAge and bAge become more precise. Here, we aim to develop accurate epigenetic predictors of cAge and bAge, whilst improving our understanding of their epigenomic architecture. METHODS: First, we perform large-scale (N = 18,413) epigenome-wide association studies (EWAS) of chronological age and all-cause mortality. Next, to create a cAge predictor, we use methylation data from 24,674 participants from the Generation Scotland study, the Lothian Birth Cohorts (LBC) of 1921 and 1936, and 8 other cohorts with publicly available data. In addition, we train a predictor of time to all-cause mortality as a proxy for bAge using the Generation Scotland cohort (1214 observed deaths). For this purpose, we use epigenetic surrogates (EpiScores) for 109 plasma proteins and the 8 component parts of GrimAge, one of the current best epigenetic predictors of survival. We test this bAge predictor in four external cohorts (LBC1921, LBC1936, the Framingham Heart Study and the Women's Health Initiative study). RESULTS: Through the inclusion of linear and non-linear age-CpG associations from the EWAS, feature pre-selection in advance of elastic net regression, and a leave-one-cohort-out (LOCO) cross-validation framework, we obtain cAge prediction with a median absolute error equal to 2.3 years. Our bAge predictor was found to slightly outperform GrimAge in terms of the strength of its association to survival (HRGrimAge = 1.47 [1.40, 1.54] with p = 1.08 × 10-52, and HRbAge = 1.52 [1.44, 1.59] with p = 2.20 × 10-60). Finally, we introduce MethylBrowsR, an online tool to visualise epigenome-wide CpG-age associations. CONCLUSIONS: The integration of multiple large datasets, EpiScores, non-linear DNAm effects, and new approaches to feature selection has facilitated improvements to the blood-based epigenetic prediction of biological and chronological age.


Asunto(s)
Epigenoma , Epigenómica , Humanos , Femenino , Proyectos de Investigación , Envejecimiento/genética , Epigénesis Genética
17.
Commun Biol ; 6(1): 6, 2023 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-36596879

RESUMEN

Refractive error, measured here as mean spherical equivalent (SER), is a complex eye condition caused by both genetic and environmental factors. Individuals with strong positive or negative values of SER require spectacles or other approaches for vision correction. Common genetic risk factors have been identified by genome-wide association studies (GWAS), but a great part of the refractive error heritability is still missing. Some of this heritability may be explained by rare variants (minor allele frequency [MAF] ≤ 0.01.). We performed multiple gene-based association tests of mean Spherical Equivalent with rare variants in exome array data from the Consortium for Refractive Error and Myopia (CREAM). The dataset consisted of over 27,000 total subjects from five cohorts of Indo-European and Eastern Asian ethnicity. We identified 129 unique genes associated with refractive error, many of which were replicated in multiple cohorts. Our best novel candidates included the retina expressed PDCD6IP, the circadian rhythm gene PER3, and P4HTM, which affects eye morphology. Future work will include functional studies and validation. Identification of genes contributing to refractive error and future understanding of their function may lead to better treatment and prevention of refractive errors, which themselves are important risk factors for various blinding conditions.


Asunto(s)
Miopía , Errores de Refracción , Humanos , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Miopía/genética , Errores de Refracción/genética , Población Blanca , Pueblos del Este de Asia
18.
J Clin Endocrinol Metab ; 108(8): 2087-2098, 2023 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-36658456

RESUMEN

CONTEXT: Humans respond profoundly to changes in diet, while nutrition and environment have a great impact on population health. It is therefore important to deeply characterize the human nutritional responses. OBJECTIVE: Endocrine parameters and the metabolome of human plasma are rapidly responding to acute nutritional interventions such as caloric restriction or a glucose challenge. It is less well understood whether the plasma proteome would be equally dynamic, and whether it could be a source of corresponding biomarkers. METHODS: We used high-throughput mass spectrometry to determine changes in the plasma proteome of i) 10 healthy, young, male individuals in response to 2 days of acute caloric restriction followed by refeeding; ii) 200 individuals of the Ely epidemiological study before and after a glucose tolerance test at 4 time points (0, 30, 60, 120 minutes); and iii) 200 random individuals from the Generation Scotland study. We compared the proteomic changes detected with metabolome data and endocrine parameters. RESULTS: Both caloric restriction and the glucose challenge substantially impacted the plasma proteome. Proteins responded across individuals or in an individual-specific manner. We identified nutrient-responsive plasma proteins that correlate with changes in the metabolome, as well as with endocrine parameters. In particular, our study highlights the role of apolipoprotein C1 (APOC1), a small, understudied apolipoprotein that was affected by caloric restriction and dominated the response to glucose consumption and differed in abundance between individuals with and without type 2 diabetes. CONCLUSION: Our study identifies APOC1 as a dominant nutritional responder in humans and highlights the interdependency of acute nutritional response proteins and the endocrine system.


Asunto(s)
Diabetes Mellitus Tipo 2 , Proteoma , Humanos , Masculino , Proteómica , Glucosa , Restricción Calórica
19.
bioRxiv ; 2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-36711749

RESUMEN

Variation in the rate at which humans age may be rooted in early life events acting through genomic regions that are influenced by such events and subsequently are related to health phenotypes in later life. The parent-of-origin-effect (POE)-regulated methylome includes regions either enriched for genetically controlled imprinting effects (the typical type of POE) or atypical POE introduced by environmental effects associated with parents. This part of the methylome is heavily influenced by early life events, making it a potential route connecting early environmental exposures, the epigenome and the rate of aging. Here, we aim to test the association of POE-influenced methylation of CpG dinucleotides (POE-CpG sites) with early and later environmental exposures and subsequently with health-related phenotypes and adult aging phenotypes. We do this by performing phenome-wide association analyses of the POE-influenced methylome using a large family-based population cohort (GS:SFHS, Ndiscovery=5,087, Nreplication=4,450). At the single CpG level, 92 associations of POE-CpGs with phenotypic variation were identified and replicated. Most of the associations were contributed by POE-CpGs belonging to the atypical class and the most strongly enriched associations were with aging (DNAmTL acceleration), intelligence and parental (maternal) smoking exposure phenotypes. We further found that a proportion of the atypical-POE-CpGs formed co-methylation networks (modules) which are associated with these phenotypes, with one of the aging-associated modules displaying increased internal module connectivity (strength of methylation correlation across constituent CpGs) with age. Atypical POE-CpGs also displayed high levels of methylation heterogeneity and epigenetic drift (i.e. information loss with age) and a strong correlation with CpGs contained within epigenetic clocks. These results identified associations between the atypical-POE-influenced methylome and aging and provided new evidence for the "early development of origin" hypothesis for aging in humans.

20.
Biology (Basel) ; 11(12)2022 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-36552356

RESUMEN

During development, thyroid hormones play an important role in eye development, while in adults, some pathological thyroid conditions can affect the normal functioning of the eyes. Thyroid eye disease is the most well-known eye pathology caused by a pathological thyroid condition. Few studies have investigated the association between ocular parameters and thyroid function. Thus, in this study, we aimed to examine whether thyroid activity affects ocular parameters. This cross-sectional study included 4633 healthy adults recruited within the 10,001 Dalmatians project of the Croatian Biobank. The plasma levels of thyroid-stimulating hormone (TSH), free triiodothyronine (fT3), free thyroxine (fT4), thyroglobulin (Tg), thyroglobulin antibodies (TgAb), and thyroid peroxidase antibodies (TPOAb) were measured by an immunoassay. We determined 20 ocular parameters for each participant (10 for each eye, including corneal radius, corneal thickness, anterior chamber depth, anterior chamber angle, lens thickness, posterior chamber length, axial length, intraocular lens power (IOL), spherical power, and cylinder power). Patients with hyperthyroidism had thicker corneas compared to euthyroid individuals. Corneal thickness was also negatively associated with plasma TSH levels. Intra-ocular lens power was higher in patients with clinical hypothyroidism, while spherical power was higher in euthyroid individuals with positive antibodies compared to euthyroid individuals. Intra-ocular lens power negatively correlated with fT4 levels, while spherical power positively correlated with TgAb, TPOAb, and Tg levels and negatively correlated with TSH levels. The anterior chamber angle was positively associated with plasma TSH levels and TPOAb levels and negatively associated with plasma fT4 levels. These findings suggest an interesting interplay between ophthalmic measures and thyroid status, detectable even in the general adult population.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...